Perturbation series for the mass gap of the (1+1)-dimensional O(2)-model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18827
(http://iopscience.iop.org/0305-4470/18/5/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:30

Please note that terms and conditions apply.

Perturbation series for the mass gap of the ($1+1$)-dimensional $\mathbf{O}(2)$-model

P G Hornby \dagger and Michael N Barber \ddagger
+ School of Mathematics, University of New South Wales, PO Box 1, Kensington, NSW 2033, Australia
\ddagger Department of Mathematics, The Faculties, Australian National University, PO Box 4, Canberra, ACT 2601, Australia

Received 15 August 1984

Abstract

The strong coupling mass gap series to 10th order in the dimensionless coupling is presented for the $(1+1)$-dimensional $O(2)$-model. The second logarithmic derivative of the Euler transformed series is examined using Padé techniques to yield the critical parameter estimates $\lambda_{\mathrm{c}} \approx 0.89+0.02$ and $\sigma \approx 0.50 \pm 0.08$. These results are consistent with the model exhibiting a Kosterlitz-Thouless transition.

1. Introduction

The quantum Hamiltonian in which we are interested will be taken as

$$
\begin{equation*}
H=\sum_{i} L_{i}^{2}-\lambda \sum_{i}\left(\Omega_{i}^{+} \Omega_{i+1}+\Omega_{i} \Omega_{i+1}^{+}\right)=H_{0}-\lambda V . \tag{1.1}
\end{equation*}
$$

The normalised eigenstates of L_{i} are denoted by $\left|S_{i}\right\rangle$ and the energy scale is chosen so that

$$
\begin{equation*}
L_{i}^{2}\left|S_{i}\right\rangle=S_{i}^{2}\left|S_{i}\right\rangle \tag{1.2}
\end{equation*}
$$

with S_{i} an integer. The scale of λ is chosen so that

$$
\begin{equation*}
\Omega_{i}^{+}\left|S_{i}\right\rangle=\left|S_{i}+1\right\rangle, \quad \Omega_{i}\left|S_{i}\right\rangle=\left|S_{i}-1\right\rangle \tag{1.3a,b}
\end{equation*}
$$

In addition, the eigenstates of H_{0} are denoted by

$$
\begin{equation*}
|\boldsymbol{S}\rangle=\left|S_{1}, S_{2}, \ldots\right\rangle=\otimes_{i}\left|S_{i}\right\rangle . \tag{1.4}
\end{equation*}
$$

The Hamiltonian (1.1) is the quantum Hamiltonian analogue in ($1+1$) dimensions of the two-dimensional planar rotor O(2)-model (Fradkin and Susskind 1978). Universality implies that the mass gap of (1.1) should vanish at a critical coupling λ_{c} as

$$
\begin{equation*}
G(\lambda) \approx A \exp \left(-k\left|\lambda-\lambda_{d}\right|^{-\sigma}\right) \tag{1.5}
\end{equation*}
$$

with $\sigma=\frac{1}{2}$ (Kosterlitz 1974). Strong coupling mass gap series to 8 th order in λ have been derived and analysed previously (Hamer et al 1979). The coupling constant x used there is related to λ by $x=2 \lambda$. The results of the mass gap series were later complemented by series expansions of the susceptibility (Hamer and Kogut 1979). While the results were not inconsistent with (1.5) and $\sigma=\frac{1}{2}$, they were far from
conclusive. In this paper we add two more terms to the mass gap expansion. This addition considerably improves the quality of the estimates, lending much stronger support to the value $\sigma=\frac{1}{2}$.

2. Generation of series

The method used to generate the series is by now standard (Hamer et al 1979, Barber and Duxbury 1982). The required coefficients can be calculated by restricting the lattice to be a finite periodic chain of M sites and applying Rayleigh-Schrödinger perturbation theory. The state space of the unperturbed Hamiltonian H_{0} can be broken up into sectors labelled by the eigenvalues of the translation operator (momentum) and ΣL_{i}. Since V is also translationally invariant and does not change the value of ΣS_{i}, these sectors do not mix in perturbation theory on a finite lattice. To compute the mass gap we require the perturbation expansion of the lowest lying state in the zero momentum sectors with $\Sigma S_{i}=0$ and $\Sigma S_{i}=-1$, corresponding to the ground state and first excited state of H respectively.

For high-order expansions, involving large lattices, it is most efficient to divide the calculation into two stages.
(1) Construction of matrix representation of V in the basis formed by the eigenstates of H_{0}.
(2) Generation of the series.

The construction of the matrix of V is the same as for a standard finite lattice calculation (see e.g. Roomany et al 1980, Hamer and Barber 1981, Irving and Thomas 1982, Hamer 1983), except for several minor modifications. This matrix is sparse and can be stored sequentially in an appropriate data structure.

The series generation technique given a matrix representation of V has not been published in any detail previously. Since care in its computer implementation is critical to high-order calculations, we outline the method here.

Let $|E\rangle$ be a (non-degenerate) eigenstate of H with energy E and define the expansions

$$
\begin{align*}
& |E\rangle=\sum_{r=0}^{\infty} \lambda^{r}\left|\psi_{r}\right\rangle, \tag{2.1}\\
& E=\sum_{r=0}^{\infty} e_{r} \lambda^{r} . \tag{2.2}
\end{align*}
$$

Substituting these expressions into the eigenvalue equation for H and equating powers of λ in the usual way leads to

$$
\begin{equation*}
\left(H_{0}-e_{0}\right)\left|\psi_{r}\right\rangle=V\left|\psi_{r-1}\right\rangle+\sum_{s=0}^{r-1} e_{r-s}\left|\psi_{s}\right\rangle \tag{2.3}
\end{equation*}
$$

Denoting the unperturbed energies of the basis states $|\boldsymbol{S}\rangle$ by

$$
\begin{equation*}
H_{0}|\boldsymbol{S}\rangle=E_{0}(\boldsymbol{S})|\boldsymbol{S}\rangle \tag{2.4}
\end{equation*}
$$

and the components of the $\left|\psi_{r}\right\rangle$ in the $|S\rangle$ basis by

$$
\begin{equation*}
\psi_{r}(\boldsymbol{S})=\left\langle\boldsymbol{S} \mid \psi_{r}\right\rangle, \tag{2.5}
\end{equation*}
$$

(2.3) becomes

$$
\begin{equation*}
\psi_{r}(\boldsymbol{S})=\frac{\sum_{s=0}^{r-1} e_{r-s} \psi_{s}(\boldsymbol{S})+\Sigma_{\boldsymbol{S}^{\prime}}\langle\boldsymbol{S}| V\left|\boldsymbol{S}^{\prime}\right\rangle \psi_{r-1}\left(\boldsymbol{S}^{\prime}\right)}{E_{0}(\boldsymbol{S})-e_{0}} \tag{2.6}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\left|\chi_{m}\right\rangle=\sum_{r=0}^{m} \lambda^{r}\left|\psi_{r}\right\rangle=|E\rangle+\lambda^{m+1}|\eta\rangle \tag{2.7}
\end{equation*}
$$

be the perturbative wavefunction at order m. The energy estimate arising out of this wavefunction is

$$
\begin{equation*}
\xi_{m}=\frac{\left\langle\chi_{m}\right| H\left|\chi_{m}\right\rangle}{\left\langle\chi_{m} \mid \chi_{m}\right\rangle}=E+O\left(\lambda^{2 m+2}\right) \tag{2.8}
\end{equation*}
$$

so that knowledge of $|E\rangle$ to order m determines E to order $2 m+1$. Thus, to obtain a perturbation expansion to order $2 m+1$, one need only work in a set of basis states of order m or less. This means that it is not necessary to construct the entire finite lattice Hamiltonian in the matrix construction stage. Instead, it suffices to find only those matrix elements associated with the basis states of order $r \leqslant m$.

In view of the general form of (2.8) we now define

$$
\begin{align*}
& Q_{m}(\lambda)=\left\langle\chi_{m} \mid \chi_{m}\right\rangle=\sum_{s=0}^{2 m} q_{s}^{m} \lambda^{s}, \tag{2.9}\\
& P_{m}(\lambda)=\left\langle\chi_{m}\right| H\left|\chi_{m}\right\rangle=\sum_{s=0}^{2 m+1} p_{s}^{m} \lambda^{s} . \tag{2.10}
\end{align*}
$$

It is then a straightforward exercise to show that the q_{s}^{m} and p_{s}^{m} satisfy

$$
\begin{gather*}
q_{s}^{m}= \begin{cases}q_{s}^{m-1}, & s=0, \ldots, m-1, \\
q_{s}^{m-1}+2\left\langle\psi_{s-m} \mid \psi_{m}\right\rangle, & s=m, \ldots, 2 m-2, \\
2\left\langle\psi_{s-m} \mid \psi_{m}\right\rangle, & s=2 m-1, \\
\left\langle\psi_{m} \mid \psi_{m}\right\rangle, & s=2 m,\end{cases} \tag{2.11}\\
p_{s}^{m}= \begin{cases}p_{s}^{m-1}, & s=0, \ldots, m-1, \\
p_{s}^{m-1}+2\left\langle\psi_{0}\right| H_{0}\left|\psi_{m}\right\rangle, & s=m, \\
p_{s}^{m-1}+2\left\langle\psi_{s-m}\right| H_{0}\left|\psi_{m}\right\rangle-2\left\langle\psi_{s-m-1}\right| V\left|\psi_{m}\right\rangle, & s=m+1, \ldots, 2 m-1, \\
\left\langle\psi_{m}\right| H_{0}\left|\psi_{m}\right\rangle-2\left\langle\psi_{m-1}\right| V\left|\psi_{m}\right\rangle, & s=2 m, \\
-\left\langle\psi_{m}\right| V\left|\psi_{m}\right\rangle, & s=2 m+1 .\end{cases}
\end{gather*}
$$

The initial conditions for these recurrence relations depend on the initial unperturbed eigenstate of H_{0}. For the ground state this is the (non-degenerate) state $\left|\psi_{0}\right\rangle=|0,0, \ldots\rangle$ with $\Sigma S_{i}=0$, while for the first excited state it suffices (see Hamer et al 1979) to consider the zero momentum superposition $\left.\left|\psi_{0}\right\rangle=(1 / \sqrt{M}) \Sigma_{i=1}^{M} \Omega_{i} \mid 0,0, \ldots\right)$ of eigenstates of H_{0} with $\Sigma S_{i}=-1$.

Given $\left|\psi_{0}\right\rangle$,

$$
\begin{equation*}
q_{0}^{0}=\left\langle\psi_{0} \mid \psi_{0}\right\rangle=1 \tag{2.13}
\end{equation*}
$$

while the initial conditions on the p_{s}^{m} are obtained from $P_{0}(\lambda)=\left\langle\psi_{0}\right| H_{0}\left|\psi_{0}\right\rangle-\lambda\left\langle\psi_{0}\right| V\left|\psi_{0}\right\rangle$,
implying

$$
\begin{equation*}
p_{0}^{0}=\left\langle\psi_{0}\right| H_{0}\left|\psi_{0}\right\rangle, \quad p_{0}^{\prime}=-\left\langle\psi_{0}\right| V\left|\psi_{0}\right\rangle \tag{2.14a,b}
\end{equation*}
$$

Finally, a little algebra (using the fact that $q_{0}^{m}=1$ for all m) yields

$$
\begin{align*}
& e_{2 m}=p_{2 m}^{m}-\sum_{r=0}^{2 m-1} e_{r} q_{2 m-r}^{m}, \tag{2.15a}\\
& e_{2 m+1}=p_{2 m+1}^{m}-\sum_{r=1}^{2 m} e_{r} q_{2 m+1-r}^{m}, \tag{2.15b}
\end{align*}
$$

for the perturbation coefficients.
The series generation algorithm can now be stated.
(1) Initialise a vector we shall refer to as $\left|\psi_{\text {current }}\right\rangle$, to the required eigenstate $\left|\psi_{0}\right\rangle$ of H_{0}. Set $m=0$.
(2) Using (2.11), update the q_{s}^{m}. When $m=0$, only the $s=2 m$ case of (2.11) is active.
(3) Using (2.12), begin the update of the p_{s}^{m} by first adding on the terms involving H_{0}. Computationally, this requires a linear scan through the previously generated $\left|\psi_{r}\right\rangle$, and a few inner products. This can be done concurrently with step (2). In the case $m=0$ only the $s=2 m$ part of (2.12) (with $\left|\psi_{-1}\right\rangle=0$) is operable.
(4) Multiply $\left|\psi_{\text {current }}\right\rangle$ by V to form a new $\left|\psi_{\text {current }}\right\rangle$, and use this vector to complete the update of the p_{s}^{m}. In the case $m=0$ only the $s=2 m+1$ part of (2.12) is operable.
(5) Using ($2.15 a, b$) calculate $e_{2 m}$ and $e_{2 m+1}$ and exit if one has finished.
(6) Now update $\left|\psi_{\text {current }}\right\rangle$ to the next perturbative wavefunction coefficient $\left|\psi_{m+1}\right\rangle$ using (2.6).
(7) Set $m=m+1$ and go to (2) above.

Several points contribute to the efficiency of this method. Firstly, the computation can be arranged so that the matrix elements and the $\left|\psi_{r}\right\rangle$ components are stored sequentially. Thus it is possible to efficiently implement this method with only one vector array resident in central memory. The rest of the information may even reside on tapes. Secondly, most of the inner products of the form $\left\langle\psi_{r}\right|$ operator $\left|\psi_{m}\right\rangle$ can be calculated relatively quickly for $r<m$. In fact, the proliferation of basis states as the order increases results in all of the inner products for $r<m$ consuming about as much time as the $r=m$ inner product by itself. A similar comment applies to the multiplication of the $\left|\psi_{r}\right\rangle$ by V. Therefore, despite the initially formidable appearance of many inner products in (2.11) and (2.12), these equations do lend themselves to a fast, memory efficient algorithm. Thirdly, while it is necessary to find $V\left|\psi_{m}\right\rangle$ in order to calculate $e_{2 m}$ and $e_{2 m+1}$, this does not require knowledge of states at order $m+1$, since only terms of the form $\left\langle\psi_{r}\right| V\left|\psi_{m}\right\rangle(r \leqslant m)$ appear in (2.12). Therefore, one only needs to know the component of $V\left|\psi_{m}\right\rangle$ overlapping basis states of order m or less. This detail can be taken into account in the matrix construction stage by storing only those matrix elements of V (and H_{0}) associated with basis states of order $r \leqslant m$. Care must also be taken that the boundaries of the periodic lattice do not cause contributions to $\left\langle\psi_{r}\right| V\left|\psi_{m}\right\rangle$ which would not normally arise on an infinite lattice. For example, on a $2 m$-site periodic lattice, consider the m th-order basis state $\langle 1,-1,1,-1, \ldots, 1,-1\rangle$. Acting with $\Omega_{2 m+1} \Omega_{2 m+2}^{+}=\Omega_{1} \Omega_{2}^{+}$results in a basis element of order $m-1$. However, on an infinite lattice one would obtain a basis element of order $m+1$, which would not overlap with $\left|\psi_{m-1}\right\rangle$. In the present case, a periodic lattice of size $2 m+1$ yields a mass gap expansion which agrees with the bulk to order $2 m$.

3. Results

An 11-site periodic lattice was used to derive a 10th-order mass gap expansion for the bulk. The matrix construction in the ground state sector (zero momentum, $\Sigma_{i} S_{i}=0$) involved 5155 basis states. Of these 4066 were of 5 th order. On a CDC CYBER 72, the matrix construction step took 148 seconds CPU time. Generation of the 11 th-order ground state series from the matrix took 15 seconds on the same machine. The matrix elements were stored on tape and the $\left|\psi_{r}\right\rangle$ kept on disc. Only one working array was resident in central memory. The first excited state calculation (in the zero momentum, $\Sigma_{i} S_{i}=-1$ sector) involved 28004 basis states. Again, most of these (21204) were 5 th-order states. The matrix construction took 808 seconds while the generation of an 11 th-order perturbation expansion took only 93 seconds.

The resulting mass gap series agrees with the bulk to 10 th order in λ and is given by

$$
\begin{align*}
G(\lambda)=1-2 \lambda & +0.5 \lambda^{2}+0.25 \lambda^{3}+0.2302083 \lambda^{4}+0.192065972 \lambda^{5}+0.0144735794 \lambda^{6} \\
& +0.0890622894 \lambda^{7}-0.0448071196 \lambda^{8}+0.0359987647 \lambda^{9} \\
& -0.0818017597 \lambda^{10} . \tag{3.1}
\end{align*}
$$

Our analysis of this series closely parallels that of Hamer et al (1979). The first logarithmic derivative of this series can be interpreted as the inverse β function of the model. This β function can be fitted with Padé approximants which turn out to be concave upward. This suggests an algebraic zero in the β function, a conjecture which is further supported by a ratio test on the coefficients of the logarithmic derivative series. Following the continuation of this analysis (Hamer and Kogut 1979) we Euler transform (3.1) to the variable $Z=\lambda /(\lambda+\alpha)$ and then take the second logarithmic derivative of the resulting series. In view of the ansatz (1.5), the first simple pole on the real axis should lie at $Z_{c}=\lambda_{c} /\left(\lambda_{c}+\alpha\right)$ while the residue of this pole should be $-1-\sigma$. Several Padé tables were constructed from the transformed series for a variety of values of α. The choice $\alpha=1.5$ gave rise to the estimates for λ_{c} and σ shown in table 1. Other values of α yielded similar results; however, the choice of $\alpha=1.5$ led to a Padé table free of spurious behaviour of the off-diagonal approximants. From table 1 we estimate

$$
\lambda_{c} \approx 0.89 \pm 0.02, \quad \sigma \approx 0.50 \pm 0.08
$$

which are considerable improvements on the 8 th-order results. Moreover, a ratio test applied to the first logarithmic derivative of the Euler transformed series leads to very similar results, as was the case for the 8th-order series (Hamer and Kogut 1979). Ferer (1985) has recently analysed our extended series by his q-fit method (Ferer and Velgakis 1983), yielding a similar estimate of σ.

Table 1. Padé table of estimates λ_{c} and σ (bracketed figures).

N	$[N-1 / N]$	$[N / N]$	$[N+1 / N]$
1	$0.9335(0.642)$	$0.8866(0.518)$	$0.9244(0.641)$
2	$0.9089(0.581)$	$0.9058(0.507)$	$0.8776(0.425)$
3	$0.9104(0.584)$	$0.8802(0.444)$	$0.8764(0.420)$
4	$0.8885(0.501)$	$0.8923(0.529)$	

Acknowledgments

One of us (PGH) would like to thank the Australian Government for the award of a Postgraduate Research Scholarship. We thank Dr M Ferer for communicating his results prior to publication.

References

Barber M N and Duxbury P M 1982 J. Stat. Phys. 29427
Ferer M 1985 to be published
Ferer M and Velgakis M J 1983 Phys. Rev. B 27314
Fradkin E and Susskind L 1978 Phys. Rev. D 172637
Hamer C J 1983 J. Phys. A: Math. Gen. 161257
Hamer C J and Barber M N 1981 J. Phys. A: Math. Gen. 14259
Hamer C J and Kogut J B 1979 Phys. Rev. B 203859
Hamer C J, Kogut J B and Susskind L 1979 Phys. Rev. D 193091
Irving A C and Thomas A 1982 Nucl. Phys. B 200424
Kosterlitz J M 1974 J. Phys. C: Solid State Phys. 71046
Roomany H, Wyld H W and Holloway L E 1980 Phys. Rev. D 211557

