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Canberra, ACT 2601, Australia 
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Abstract. The strong coupling mass gap series to 10th order in the dimensionless coupling 
is presented for the ( 1  + I)-dimensional O(2)-model. The second logarithmic derivative of 
the Euler transformed series is examined using Pade techniques to yield the critical 
parameter estimates Ac = 0.89+ 0.02 and U 0.50 f 0.08. These results are consistent with 
the model exhibiting a Kosterlitz-Thouless transition. 

1. Introduction 

The quantum Hamiltonian in which we are interested will be taken as 

H = Lf - A (fltfl,, I + Rifl  :+ 1 )  = Ho - A V. 
I I 

The normalised eigenstates of L, are denoted by IS,) and the energy scale is chosen 
so that 

LflS,) = sfls,) (1.2) 

with SI an integer. The scale of A is chosen so that 

fl,ls,) = Is, - 1). fl:lsl) = Is, + I), (1.3a, b )  

In addition, the eigenstates of Ho are denoted by 

The Hamiltonian ( 1  . l )  is the quantum Hamiltonian analogue in ( 1  + 1) dimensions of 
the two-dimensional planar rotor O(2)-model (Fradkin and Susskind 1978). Univer- 
sality implies that the mass gap of (1.1) should vanish at a critical coupling A, as 

G(A) = A exp(-kjA -A,/-") (1.5) 

with U =+ (Kosterlitz 1974). Strong coupling mass gap series to 8th order in A have 
been derived and analysed previously (Hamer et a1 1979). The coupling constant x 
used there is related to A by x = 2 A .  The results of the mass gap series were later 
complemented by series expansions of the susceptibility (Hamer and Kogut 1979). 
While the results were not inconsistent with (1.5) and U = + ,  they were far from 
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conclusive. In this paper we add two more terms to the mass gap expansion. This 
addition considerably improves the quality of the estimates, lending much stronger 
support to the value (+ = t .  

2. Generation of series 

The method used to generate the series is by now standard (Hamer et al 1979, Barber 
and Duxbury 1982). The required coefficients can be calculated by restricting the 
lattice to be a finite periodic chain of M sites and applying Rayleigh-Schrodinger 
perturbation theory. The state space of the unperturbed Hamiltonian Ho can be broken 
up into sectors labelled by the eigenvalues of the translation operator (momentum) 
and Z L,. Since V is also translationally invariant and does not change the value of 
Z Si, these sectors do not mix in perturbation theory on a finite lattice. To compute 
the mass gap we require the perturbation expansion of the lowest lying state in the 
zero momentum sectors with Z S, = 0 and Z Si = -1, corresponding to the ground state 
and first excited state of H respectively. 

For high-order expansions, involving large lattices, it is most efficient to divide the 
calculation into two stages. 

( 1 )  Construction of matrix representation of V in the basis formed by the eigenstates 

(2) Generation of the series. 
The construction of the matrix of V is the same as for a standard finite lattice 

calculation (see e.g. Roomany et a1 1980, Hamer and Barber 1981, Irving and Thomas 
1982, Hamer 1983), except for several minor modifications. This matrix is sparse and 
can be stored sequentially in an appropriate data structure. 

The series generation technique given a matrix representation of V has not been 
published in any detail previously. Since care in its computer implementation is critical 
to high-order calculations, we outline the method here. 

Let / E )  be a (non-degenerate) eigenstate of H with energy E and define the 
expansions 

of Ho. 

CO 

E = 2 e d r .  
,=O 

Substituting these expressions into the eigenvalue equation for H and equating powers 
of A in the usual way leads to 

Denoting the unperturbed energies of the basis states IS) by 

H O W )  = Eo(S)IS) 

+r(S) = ( s l + r ) ,  

and the components of the I + r )  in the IS) basis by 

(2.3) 
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(2.3) becomes 

Now let 
m 

I x m ) =  C A ~ I J I , ) = I E ) + A " + ~ I ~  
r=O 

be the perturbative wavefunction at order m. 
wavefunction is 

(2.7) 

The energy estimate arising out of this 

so that knowledge of IE) to order m determines E to order 2m + 1. Thus, to obtain a 
perturbation expansion to order 2m + 1 ,  one need only work in a set of basis states of 
order m or less. This means that it is not necessary to construct the entire finite lattice 
Hamiltonian in the matrix construction stage. Instead, it suffices to find only those 
matrix elements associated with the basis states of order r s  m. 

In view of the general form of (2.8) we now define 

It is then a straightforward exercise to show that the 4," and j(" satisfy 

q T ' ,  
qSm-'+2(JIs-mlJIm), 
2(+s- m I Jim), s = 2 m - 1 ,  
( JIm IJIm), s = 2 m ,  

s = 0,. . . , m - 1 ,  
s = m , .  . . , 2 m  -2 ,  

(2.9) 

(2.10) 

(2.1 1) 

pSm-', 
P Y - '  + 2(JIolHolJIm), 

( JIm 1 H O l  JIm) - 2(+m- I I VI Jim), 

s = 0, . . . , m - 1 ,  
s = m, 
s = m + l ,  ..., 2m-1, (2.12) 
s = 2m, 
s = 2 m + l .  

PI" = PY-' + 2( J I ~  - m I H O l  J I ~ )  - 2( +s - m - I I VI JIm ), I -( JIm I VI + m ) ,  

The initial conditions for these recurrence relations depend on the initial unperturbed 
eigenstate of Ho. For the ground state this is the (non-degenerate) state I+o) = 10,0, . . .) 
with Z S, = 0, while for the first excited state it suffices(see Hamer e? a1 1979) to 
consider the zero momentum superposition IJIo) = ( I / JM)  Z E l  RiIO, 0,.  . .) of eigen- 
states of Ho with Z Si = - 1 .  

Given I J I O ) ,  

q: = (JIolJIo) = 1 ,  (2.13) 

while the initial conditions on the ps" are obtained from Po(A) = (JIolHol+o) - A(JIol 
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implying 

Finally, a little algebra (using the fact that q: = 1 for all m )  yields 

2m-I  
m e,, =pZm,- erqtm-rr 

r = O  

(2.14a, b )  

(2 .154 

(2.15b) 

for the perturbation coefficients. 
The series generation algorithm can now be stated. 
( 1 )  Initialise a vector we shall refer to as I $ c u r r e n t ) ,  to the required eigenstate 

(2) Using (2.1 I) ,  update the q y .  When m = 0, only the s = 2m case of (2.1 1 )  is active. 
(3) Using (2.12), begin the update of the p :  by first adding on the terms involving 

Ho. Computationally, this requires a linear scan through the previously generated l t ,br) ,  
and a few inner products. This can be done concurrently with step (2).  In the case 
m = 0 only the s = 2m part of (2.12) (with I$-,) = 0) is operable. 

by V to form a new I + c u r r e n t ) ,  and use this vector to complete 
the update of the p r .  In the case m = 0 only the s = 2m + 1 part of (2.12) is operable. 

of Ho. Set m = 0. 

(4) Multiply 

(5) Using (2.15a, b )  calculate e2, and e,,,, and exit if one has finished. 
(6) Now update I $ c u r r e n t )  to the next perturbative wavefunction coefficient 

(7) Set m = m +  1 and go to (2) above. 
Several points contribute to the efficiency of this method. Firstly, the computation 

can be arranged so that the matrix elements and the components are stored 
sequentially. Thus it is possible to efficiently implement this method with only one 
vector array resident in central memory. The rest of the information may even reside 
on tapes. Secondly, most of the inner products of the form ($,loperator]$,) can be 
calculated relatively quickly for r < m. In fact, the proliferation of basis states as the 
order increases results in all of the inner products for r < m consuming about as much 
time as the r = m inner product by itself. A similar comment applies to the multiplication 
of the by V. Therefore, despite the initially formidable appearance of many inner 
products in (2.11) and (2.12), these equations do lend themselves to a fast, memory 
efficient algorithm. Thirdly, while it is necessary to find VI+,) in order to calculate 
eZm and e2m+l,  this does not require knowledge of states at order m + 1, since only 
terms of the form ( &  ( r  s m )  appear in (2.12). Therefore, one only needs to 
know the component of VI$,) overlapping basis states of order m or less. This detail 
can be taken into account in the matrix construction stage by storing only those matrix 
elements of V (and Ho) associated with basis states of order r c  m. Care must also 
be taken that the boundaries of the periodic lattice do not cause contributions to 
($rlVl$m) which would not normally arise on an infinite lattice. For example, on a 
2m-site periodic lattice, consider the mth-order basis state 11, - 1, 1, - 1, . . . , 1, - 1). 
Acting with f lzm+lf l~m+2 = fl,fl: results in a basis element of order m - 1. However, 
on an infinite lattice one would obtain a basis element of order m + 1, which would 
not overlap with In the present case, a periodic lattice of size 2m + 1 yields a 
mass gap expansion which agrees with the bulk to order 2m. 

using (2.6). 
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3. Results 

An 1 1-site periodic lattice was used to derive a 10th-order mass gap expansion for the 
bulk. The matrix construction in the ground state sector (zero momentum, Zi S, = 0) 
involved 5155 basis states. Of these 4066 were of 5th order. On a CDC CYBER 72, the 
matrix construction step took 148 seconds CPU time. Generation of the 11th-order 
ground state series from the matrix took 15 seconds on the same machine. The matrix 
elements were stored on tape and the kept on disc. Only one working array was 
resident in central memory. The first excited state calculation (in the zero momentum, 
X t  S ,  = -1 sector) involved 28 004 basis states. Again, most of these (21 204) were 
5th-order states. The matrix construction took 808 seconds while the generation of an 
1 lth-order perturbation expansion took only 93 seconds. 

The resulting mass gap series agrees with the bulk to 10th order in A and is given 
by 

G(A) = 1 -2A +0.5A2+0.25A3+0.230 2083'A4+0.192 065 972'A5+0.014 473 5794A6 

+0.089 062 2894A'-0.044 807 1 196A8+0.035 998 7647A9 

- 0.08 1 80 1 7597A lo.  (3.1) 

Our analysis of this series closely parallels that of Hamer et a1 (1979). The first 
logarithmic derivative of this series can be interpreted as the inverse p function of the 
model. This p function can be fitted with Pad6 approximants which turn out to be 
concave upward. This suggests an algebraic zero in the p function, a conjecture which 
is further supported by a ratio test on the coefficients of the logarithmic derivative 
series. Following the continuation of this analysis (Hamer and Kogut 1979) we Euler 
transform (3.1) to the variable 2 = A / ( A  + a )  and then take the second logarithmic 
derivative of the resulting series. In view of the ansatz (1.5), the first simple pole on 
the real axis should lie at Z,=A,/(A,+a) while the residue of this pole should be 
- 1 - U. Several Pad6 tables were constructed from the transformed series for a variety 
of values of a. The choice a = 1.5 gave rise to the estimates for A, and U shown in 
table 1. Other values of a yielded similar results; however, the choice of a = 1.5 led 
to a Pad6 table free of spurious behaviour of the off-diagonal approximants. From 
table 1 we estimate 

A, = 0.89 f 0.02, U = 0.50 ?: 0.08, 

which are considerable improvements on the 8th-order results. Moreover, a ratio test 
applied to the first logarithmic derivative of the Euler transformed series leads to very 
similar results, as was the case for the 8th-order series (Hamer and kogut 1979). Ferer 
(1985) has recently analysed our extended series by his q-fit method (Ferer and Velgakis 
1983), yielding a similar estimate of U. 

Table 1. Pad6 table of estimates A, and U (bracketed figures). 

I 0.9335 (0.642) 0.8866 (0.518) 0.9244 (0.641) 
2 0.9089 (0.581) 0.9058 (0.507) 0.8776 (0.425) 
3 0.9104 (0.584) 0.8802 (0,444) 0.8764 (0.420) 
4 0.8885 (0.501) 0.8923 (0.529) 
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